"); //-->
信号完整性分析基础系列之二
——关于眼图测量(下)
汪进进 美国力科公司深圳代表处
三、眼图测量方法
之前谈到,眼图测量方法有两种:2002年以前的传统眼图测量方法和2002年之后力科发明的现代眼图测量方法。传统眼图测量方法可以用两个英文关键词来表示:“Triggered Eye”和“Single-Bit Eye”。 现代眼图测量方法用另外两个英文关键词来表示:“Continuous-Bit Eye ”和“Single-Shot Eye”。 传统眼图测量方法用中文来理解是八个字:“同步触发+叠加显示”,现代眼图测量方法用中文来理解也是八个字:“同步切割+叠加显示”。 两种方法的差别就四个字:传统的是用触发的方法,现代的是用切割的方法。“同步”是准确测量眼图的关键,传统方法和现代方法同步的方法是不一样的。“叠加显示” 就是用模拟余辉的方法不断累积显示。
传统的眼图方法就是同步触发一次,然后叠加一次。每触发一次,眼图上增加了一个UI,每个UI的数据是相对于触发点排列的,因此是“Single-Bit Eye”,每触发一次眼图上只增加了一个比特位。图一形象表示了这种方法形成眼图的过程。
图一 传统眼图测量方法的原理
传统方法的第一个缺点就是效率太低。对于现在的高速信号如PCI-Express Gen2,PCI-SIG要求测量1百万个UI的眼图,用传统方法就需要触发1百万次,这可能需要几个小时才能测量完。第二个缺点是,由于每次触发只能叠加一个UI,形成1百万个UI的眼图就需要触发1百万次,这样不断触发的过程中必然将示波器本身的触发抖动也引入到了眼图上。对于2.5GBbps以上的高速信号,这种触发抖动是不可忽略的。
如何同步触发,也就是说如何使每个UI的数据相对于触发点排列?也有两种方法,一种方法是在被测电路板上找到和串行数据同步的时钟,将此时钟引到示波器作为触发源,时钟的边沿作为触发的条件。另外一种方法是将被测的串行信号同时输入到示波器的输入通道和硬件时钟恢复电路(CDR)通道,硬件CDR恢复出串行数据里内嵌的时钟作为触发源。 这种同步方法引入了CDR抖动,这是传统方法的第三个缺点。 此外,硬件CDR只能侦测连续串行信号才能工作正常,如果被测信号不是连续的,譬如两段连续比特位之间有一段低电平,硬件CDR就不能恢复出正确的时钟。另外,传统方法的工作原理决定了它不能对间歇性的串行信号做眼图,不能对保存的波形做眼图,不能对运算后的波形做眼图,这限制了应用范围。 这是传统方法的第四个缺点。
力科于2002年发明的现代方法形成眼图的原理如图二所示。 示波器首先捕获一组连续比特位的信号,然后用软件PLL方法恢复出时钟,最后利用恢复出的时钟和捕获到的信号按比特位切割,切割一次,叠加一次,最终将捕获到的一组数据的每个比特位都叠加到了眼图上。在力科的示波器中,恢复出的时钟可以单独输出来另作它用。
软件PLL方法恢复时钟代替了传统方法中的硬件CDR方法是一大进步。我们需要对软件PLL的工作原理深入理解。关于软件PLL,我们将另文介绍。
如果一次捕获了1百万UI的PCI-E Gen2的数据,那么用这种方法基于力科的第四代示波器可以在1-2秒内形成眼图,因此,这种方法形成眼图的效率非常高,这是现代方法的第一个优点。此外,该方法通过触发一次捕获的大量数据就能形成大量数据的眼图,触发抖动约等于零,这是该方法的第二个优点。由于是用软件PLL方法,因此时钟恢复抖动也为零,这是该方法的第三个优点。该方法可以对局部放大之后的波形做眼图,可以对历史保存的波形做眼图,可以有一些高级眼图分析功能,如眼图失败定位跟踪功能,ISOBer功能等,这是该方法的第四个优点。
图二 现代眼图测量方法的原理
图三所示清楚表示了现代方法对于非连续性的信号做眼图的优势。传统的方法无法分离出发射数据和接收数据,但用现代的方法则能隔离出发射和接收数据。 在实际应用中这种非连续性的信号比较常见,如处于实际工作模式下的PON信号,就是突发的一帧一帧的数据。
图三 现代眼图方法的优势——对局部放大之后的波形做眼图
四、力科示波器在眼图测量方面的特点和优势
自2002年力科发明创新的眼图测量方法以来,力科一直在眼图测量方面保持了绝对领先优势。 力科的串行数据分析仪SDA系列成为测量眼图的首选工具。现在总结力科公司在眼图测量方面的特点和优势如下:
1,眼图测量是衡量高速信号质量的最常用方法。力科是业界最先采用软件恢复时种的方法来形成眼图的,而现在这种方法已成为眼图测量的行业标准。也就是说,力科定义了眼图测量的新标准。
前面已详细比较了两种方法的优缺点。下面这张图片是用力科示波器和其它品牌示波器测试相同信号的对比。用传统方法引入的触发抖动和CDR抖动带来了150ps的峰-峰值误差,这是不能忽略的误差。在力科的示波器中保留了用硬件时钟形成图的功能,但已几乎没有工程师再喜欢用这种传统的方法了。
图四 现代方法和传统方法测量眼图的差别
2,力科示波器的眼图测量操作界面非常的简洁快速, 而且不需要利用第三方面软件,眼图的测试结果显示在示波器显示界面上,不需要打开第三个窗口。
在关于示波器的第三方调查报告中,易于操作常作为使用者对理想示波器的期待的首项。 “Although ease-of-use means different things to different people.”,但稍微有一点点公正之心的人都会同意这个结论:力科示波器的操作界面是最清晰简洁的,最容易上手的,眼图测量更是最方便的。
图五是力科SDA操作界面。 一级菜单,一目了然的操作步骤。第一步点击选择信号源,第二步选择信号类型,第三步查找比特率,第四步点击眼图出来了。如果PLL不是Golden PLL,多一次点击PLL设置的操作。 第一步、第二步、第三步在第一次进入测试界面设置完成后,随后不用再重复设置。所以在持续测试过程中,通常每次只需要点一键“Mask Tes”就产生了眼图。更是可以在点击“Summary”之后,同时产生了眼图、浴盆曲线、抖动趋势图、抖动直方图、各种抖动测量参数等,如图六所示。何其方便哉!
图五 力科SDA 眼图测试操作步骤
在一次面对面的PK中,客户要求同时测量眼图和抖动参数,我们一秒钟操作完之后,大家开始观看T公司的AE在操作,只见鼠标飞速点击上百次,结果等了整整几分钟后还不见结果出来(也有可能那天是操作上出现了失误)。 一级又一级深埋的菜单,呼啦啦弹出一个又一个的窗口。图七就是那次PK的时候D公司点击上百次鼠标之后的结果。但显然和力科的图片相比,缺少了抖动测量参数。 这些参数去哪里了?为什么没有显示出来?因为D公司的示波器测试眼图的窗口和眼图参数的窗口是两个窗口,不能同时保存起来,除非是接上键盘按PrintScreen键。 为了完成眼图测量,D公司的示波器总共需要有四个窗口——操作设置窗口,眼图结果显示窗口,测量参数窗口,示波器自身的窗口。
除了窗口多以外,D公司的眼图测量操作真的有那么复杂吗?是的,但也未必,如果你是D公司示波器的Fans,你已经知道如何飞速地点击鼠标,可能你也不会觉得复杂,但对于初学者,其操作怎一个“烦”字了得!第一次我们在培训中和D公司的示波器亲密接触,我和我的同事们都象遇到一个刺猬一样无从下手,最后都只得利用其操作向导的方式(如图八所示)来执行,但这种向导方式必须要设置七步,每一步至少要点击两次鼠标。操作到第七步时如果发现第一步设置不对,要重新点击六次回到第一步。但如果第三步时发现被测信号不是标准的总线信号,这个向导似乎不能用来测试普通的串行信号。(可能有更简便的操作步骤,我仅提供的是我两次测试的体验感受,不对之处,请指正。)第一次操作了D的眼图测量之后激起了我对它的操作步骤的强烈兴趣,我下载了RT-EYE
图六 一键操作,信息大全
图七 D公司的资深工程师点击上百次鼠标之后的结果,但测量参数结果不见了
图八 D公司示波器眼图测量操作步骤
软件包的操作手册,在操作手册的第66页,有图九所示的操作说明示意图。 仅此一图便可见其操作之繁琐了,难怪D公司的AE不太愿意去教会工程师们去用他们的眼图测量功能, D公司的眼图软件是基于外挂的Java程序开发的,操作的繁琐和界面的复杂是由该基因决定的。
图九 引自RT-EYE软件包操作手册
3, 力科示波器测量眼图的速度快,不管当前捕获的数据样本数是400Kpts,还是10Mpts,都能一次利用所有的这些数据形成眼图。
信号速率越来越高,眼图测量中要求包含的UI样本数越来越多,为使自己对产品的硬件性能放心,很多工程师喜欢连续测量眼图累计几百万的UI来观察有没有碰到模板。如果您有这种冲动,希望测试很多样本下的眼图,D公司的工程师们会以专业地口吻告诉你,不必要这样做,因为XX协会没有规定测试这么多样本。图六显示力科示波器捕获了4Mpts的采样点,对应的一次测量了494.046K个UI的眼图。图十显示力科示波器捕获了50Mpts的采样点,一次性测量了18.73449M个UI的眼图。力科示波器做10Mpts采样点的PCI-E G1眼图需要1-2秒钟,但D公司的示波器需要6分钟(360秒)。力科示波器做20Mpts采样点的PCI-E G1眼图,需要2-3秒钟,D公司的示波器通常这时候会死机。 以上数据来自于本人实测。但D公司在演示眼图测量时,您不会觉得很慢,反而觉得很快。为什么? 您注意到图七的左上图有一个标识UIs:8000:574996; Total:8000:574996了吗? 这表示D示波器这时捕获了574996个UI,但只截取了其中的8000个来做眼图。 如果您要测量100万个UI的眼图,D的这个标识数字会不断增加,8000-16000-24000-32000,一路涨到1000000,数字要翻转125次,整个过程历时大约20分钟,如果当时示波器的状态不好,可能会导致死机。估计等您先去喝一杯咖啡就可以翻转完成。股票每天也都只样翻转就好了J
图十 一次捕获测量18.73449M个UI的眼图
在图十一中,我们看到D公司自己声明的软件限制,稍懂英语的朋友可以阅读一下这个限制的含义。其核心意思是这个软件太消耗计算资源了,用的时候要小心一点;如果要去除存储深度的限制,您需要创建一个文本文件来解除限制。在那次PK大战中,D公司坚持要以测量8K个UI来和我们比较测量494K个UI的速度,但坚持不同意解除这个限制——不解除限制,测量一次8K个UI就不再翻转数字了,停在8000个,股票一次涨停了! 后来D公司另外一个软件包DPOJET可以在菜单中解除这个限制,如图十二所示,“Enable high performance eye rendering”,选中这个之后就可以不断翻转了。 如果您的测试需求是要测量8K个UI,请注意在测量前设置这个界面。这个设置隐藏在"Jitter & Eye Analysis"菜单列表下的"Preferences"子菜单的"Measurement"子菜单中。我的美国同事给我讲的一个故事是:"when I pointed this out to a customer, the manager of the engineering group basically threw out 3 months worth of serial data measurements done by his team using the Tek DPOJET and asked them to do it all over again." 这个客户将之前用DPOJET测试了三个月的数据全部作废了,重新再测试一遍! 您需要检查一下您之前用D公司示波器测试眼图时是否注意到了这一点。
图十一 D公司示自己出具的软件提示信息
图十二 D示波器解除限制的菜单设置
4, 力科示波器可以方便地自定义模板测试
通信行业中通常有一些串行总线是比较独特的,暂时还没有类似于PCI-SIG的权威组织来定义标准,芯片厂家会在芯片手册中定义模板的Spec,用户需要根据这些Spec自定义模板,如现在流行的CRP II,MDDI等都需要自定义模板。力科示波器可以非常方便地自定义模板。用户可用免费的Polymask 软件图形化设计或用免费的Masks Database Editor数据库编辑器数字化设计。图十三给出了自定义眼图的详细步骤。
图十三 自定义模板的步骤
5,力科示波器具有眼图模板故障定位功能,能追踪到眼图中碰到模板的数据比特位。这个功能对于调试是非常有意义的。
模板失败定位跟踪功能就是将每个碰到模板的比特位用列表显示出来,并可将每一个出现错误的比特位的波形分别显示出来,而且还可将此失败比特位的前后相邻的位同时观测。如图十四所示。
图十四 模板失败定位跟踪功能
6,力科示波器具有独特的ISOBer功能,可以测试出10的确12次方样本下的眼图。请参考之前的每周文章。
7,力科示波器具有超强功能的Eye Doctor功能,可以通过测试发送端的眼图来模拟出接收端和芯片均衡器均衡之后的眼图。请参看之前的每周文章。
8, 唯有力科示波器可以同时进行眼图和8B/10B解码等其它分析。
有时候我们需要同时进行眼图测量和其它分析,譬如8B/10B解码。如果这两种分析功能如果是属于两个软件包,D公司的示波器不能工作的,因为D公司的示波器一次只能打开机制一个软件包。如果您在打开眼图软件之后再打开8B/10B解码软件,示波器会提示您先关闭眼图软件包。力科示波器可以同时运行多个软件包,没有任何限制,而且运行的结果都在线动态显示在示波器屏幕上。如图十五所示。
图十五 力科示波器同时进行眼图测量和8B/10B解码
9, 唯有力科提供基于实时示波器的高速光信号测试方案。
光信号的测量通常是用采样示波器来完成的,但对于很多公司来说,不太可能因为单板上有光接口就考虑买采样示波器。力科独有的光电转换器OE555/455、OE525/425提供了基于实时示波器的光测试的唯一解决方案。如图十六所示,该光探头自带有通用的参考接收机,可以用在力科示波器的任何通道上。
图十六 力科独有的基于实时示波器的光探头
综上所述,您能接受这个结论吗?——力科示波器在眼图测量方面具有绝对优势,是眼图测量的首先工具。 YES,WE CAN!力科示波器能够提供最强的眼图测量能力!
*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。